

Past Papers Int 2 Chemistry

2002 Marking Scheme

Grade	Mark R	equired
Awarded	(/:	80)
Α	53+	66%
В	45+	56%
С	37+	46%
D	-	-
No award	-	-

	200)2 I	nt2 Chemistry Marking Scheme
M <i>C</i> Qu	Answer	% Pupils Correct	Reasoning
1	A	87	ElementAluminiumHydrogenIodineMagnesiumDate of Discovery1825176618111808
2	D	85	\blacksquare A Nitrogen has the formula N_2 nitrogen is a diatomic molecule \blacksquare B Oxygen has the formula O_2 oxygen is a diatomic molecule \blacksquare C Fluorine has the formula F_2 fluorine is a diatomic molecule \blacksquare D Neon is a Noble gas and has formula Ne Neon is not a diatomic molecule
3	В	77	Number of neutrons = mass number - atomic number = 35-17 = 18
4	В	74	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5	С	42	Write down Formulae Reverse crossover rule work out valency from cross over rule Cr Cl Element Valency Cr 3 Cl 1 Cr 3+(Cl-)3
6	D	67	 ☑A Chlorine atoms have 17 electrons ∴ Chloride Cl⁻ ions have 18 electrons ☑B Sulphur atoms have 16 electrons ∴ Sulphide S²⁻ ions have 18 electrons ☑C Argon atoms have 18 electrons ☑D Sodium atoms have 11 electrons ∴ Sodium Na⁺ ions have 10 electrons
7	C	84	1 mol of $(NH_4)_2SO_4 = (2\times14)+(8\times1)+(1\times32)+(4\times16) = 28+8+32+64 = 132g$
8	С	31	☑A negative ions are attracted to the negative electrode not positive ions ☑B neutral atoms are not attracted to the negative electrode ☑C negative Cl ⁻ ions lose electrons at the negative electrode and form Cl ₂ molecules ☑D neutral atoms are not attracted to the negative electrode
9	C	94	Fractional distillation separates chemicals with different boiling points. All the chemicals with similar boiling points evaporate off and are collected by condensing the vapours back into liquids.
10	В	73	$\blacksquare A$ Molecule has formula C_6H_{14} and has a different formula from heptane C_7H_{16} $\blacksquare B$ Both molecules have formula C_7H_{16} but are isomers with different structures $\blacksquare C$ Molecule has formula C_7H_{14} and has a different formula from heptane C_7H_{16} $\blacksquare D$ Molecule has formula C_7H_{14} and has a different formula from heptane C_7H_{16}
11	C	78	SubstanceABCDNamepropan-1-olpropan-2-olbutan-1-olbutan-2-olBoiling Point (°C)9782118100
12	В	87	■A in catalytic converters: carbon monoxide is turned into carbon dioxide □B in catalytic converters: carbon monoxide is turned into carbon dioxide ■C in catalytic converters: nitrogen dioxide is turned back into nitrogen ■D oxygen is not a harmful gas ∴ not reacted to get rid of in catalytic converter

13	D	37	 ☑A Sugars are not large enon ☑B Animal fats are not large ☑C Marine oils are not large ☑D Proteins are large polyment 	enough to be clo enough to be cla	ssified as polymer ssified as polymer:	S
14	Δ	55	starch +	water		glucose
17		<i>JJ</i>	(C ₆ H ₁₀ O ₅) _n +	nH ₂ O		nC ₆ H ₁₂ O ₆
15	C	50	Fats/oils molecules can be molecules of fatty acid	e hydrolysed	into 1 molecule	of glycerol and 3
			☑A Test for Hydrogen: burn	• •		
16	D	20	区B Test for Oxygen: relight 区C Test for Carbon dioxide: 図D Test for Alkenes produc	turns lime water	milky	ses bromine solution
17	В	62	Action on Acid Dilution	Effect on pH E	ffect on H ⁺ concentr Drecreases	ration
		_	✓A ethanoic acid is a weak a			· ·
18	Α	65	区B hydrochloric acid is a str 区C nitric acid is a strong aci 区D sulphuric acid is a strong	d and has many ic	ons : higher condu	ıctivity
19	D	67	Ammonia dissolves in water to	form the weak	alkali ammonium hy	/droxide :: pH >7
20	A	75	Type Acid	pH<7 Concentra	Ions in Solution	
20	A	75	Neutral e.g. pure water Alkali		tion of H ⁺ = Concen ation of OH ⁻ > Conce	
21	A	12	A base is a chemical which			
21	A	43	Metal Hydro (alkalis)	xide Metal Ox	ide Metal Carbon	ate
	_	20	☑A no of mol = volume x cond ☑B no of mol = volume x cond			
22	В	28	$\boxtimes C$ no of mol = volume \times cond	entration = 0.3lit	res \times 1mol I ⁻¹ = 0.3	mol
			☑D no of mol = volume x cond ☑A Calcium is too reactive: C			
23	D	39	☑B Copper is too reactive: Co ☑C Zinc is too reactive: Zinc	• •	•	
			☑D Silver is unreactive and a	an be made by h	eating silver ores	to release silver
24	A	57	☑A copper is not a reactive e ☑B zinc + hydrochloric acid -	-		cıd
24	A	57	区 copper carbonate + hydroc 区D zinc carbonate + hydroch	hloric acid $ ightarrow$ cop	pper chloride + wate	
			✓ A copper hydroxide is insol			
25	A	54	区B calcium chloride and copp 区C magnesium chloride and c		•	•
	•		☑D lithium chloride and copp	• •		

Questions 26 and 27 are Grid Questions.

- This style of question was dropped after the 2002 Int2 exam.
- The style of question is no longer used but the content of the question can still be asked in future exams.

26a	B (1 mark)	The high energy spark in a petrol engine to ignite the petrol/air mixture. This energy is enough to split the N=N triple bond in N2
	(I mark)	molecules and forms nitrogen dioxide: $N_2 + 2O_2 \rightarrow 2NO_2$ $\blacksquare A$ pure water has pH=7
	C+D	☑B non-metal oxides dissolve in water to form acids ☑C metal oxides dissolve in water to form alkalis
26b	(both for 1 mark)	☑D metal oxides dissolve in water to form alkalis
	(both for 1 mark)	☑E carbon monoxide is insoluble in water so is pH neutral ☑F non-metal oxides dissolve in water to form acids
26c	A+E (both for 1 mark)	☑A hydrogen in hydrocarbons burns to form water ☑B hydrocarbons contain no nitrogen so burning does not form nitrogen dioxide ☑C hydrocarbons contain no potassium so burning does not form potassium oxide ☑D hydrocarbons contain no calcium so burning does not form calcium oxide ☑E Incomplete combustion of hydrocarbons forms carbon monoxide ☑F hydrocarbons contain no sulphur so burning does not form sulphur dioxide
27	B,E (1 mark each)	 ☑A Isotopes have same number of protons but different number of neutrons ☑B Isotopes have same number of protons but different number of neutrons ☑C different isotopes of silver have different mass numbers (¹07 Ag and ¹09 Ag) ☑D Equal numbers of ¹07 Ag and ¹09 Ag isotopes due to relative atomic mass = 108 ☑E In neutral atoms: no. of electrons = no. of protons = atomic number = 47

	2002	2 Int2	Che	mist	ry /	Mark	king S	5ch	eme	
Long Qu	An	swer	Reasoning							
				e down of elements		wn Valency ach atom	Put in Cross-over		Follow ar to get fo	
1a	В	aCl ₂	Ba	Cl	Ва	Cl	Ba	, CI	BaC	,
					2	1	2	1	Buc	•12
	gas	<u>1560°C</u>								
1b(i)	liquid	963°C	Problem S	olving: Gat	thering d	ata from	data bookle	et .		
	solid		41.00000	D	1 1		11.61	07.10.6		
1b(ii)		Solid	Barium ch	loride mus	t still be	a solid at				
2a	CSi	i or SiC	There are	equal num			and C atoms 1 ∴ formul			
				de of silico			Bonding Metallic	Solid	Liquid	Solution
2b(i)		nt bonding ons not free to	 bonded together with formula SiO₂. Compounds containing only non-metals have covalent bonding 			nly non-	(metals only) Covalent	V	V	-
		e in silica	• Co	rais nave c valent comp nduct elect	oounds to	not	(non-metals only) Ionic	×	×	×
	Covalent	bonds must be			•	•	(metals + non-metals) due to the		ovalent b	onds
2b(ii)	broken to networ	melt covalent k substance					twork, all co energy ∴ hi			t be
3a	Fe →	Fe ²⁺ + 2e ⁻					become Fe		nd furthe	r oxidise
3b	Ferroxy	yl Indicator	Ferroxy	l indicato	or turns	blue in	the prese	ence of		
		stopper	rerroxy	i indicate	or Turns	s pink in	the prese	ence ot	OH 101	15
3c		oil boiled water nail	_	ayer of oil	on top o		om the wate ing water p		air dissol	ving
4a		o + 13N2O ↓ 5H2O + 13N2	C ₄ H ₁₀	+ 13N	J ₂ O –		4 <i>CO</i> ₂	+ 5H	₂ O +	13N ₂

4b	N N	N N N N
5a	$D \rightarrow C \rightarrow A \rightarrow B$	Order Letter Name Reasoning 1st D Steam Generator Steam must be made and transferred to C 2nd C Oil Extraction Lavender oil vapour is extracted from leaves 3nd A Condensation Lavender oil vapour is condensed back to liquid 4th B Oil Collection Lavender oil liquid collects in beaker
5b(i)	Wear gloves or react bromine spillage with thiosulphate solution	PPA Safety Question
5b(ii)	-0-H	Alcohols contain the hydroxyl -OH functional group
5b(iii)	ester	Condensation Reaction: Alcohol + Carboxylic Acid → Ester + Water
5b(iv)	H H-C-C O-H H	Ethanoic acid has two carbons and a carboxyl -COOH functional group
6a	Rods should be cleaned and dried	PPA Technique Question
6b	Any two from:	Same electrolyte concentration, Same electrolyte compound Same electrolyte volume Depth of rods in solution Same temperature
6c	Voltage above 0.5V e.g. 0.7V	The further apart metals are from each other on the electrochemical series, the higher the voltage of the cell. A zinc is further from copper than iron is from copper, the zinc-copper cell will have a high voltage than an iron-copper cell
7a	acid rain or nitric acid	Non-metal oxides dissolve in water to form acids e.g. sulphur dioxide, nitrogen dioxide and carbon dioxide
7b	Neutralisation	acid + metal hydroxide (alkali) → salt + water acid + metal oxide → salt + water acid + metal carbonate → salt + water + carbon dioxide
7c	F F C=C F F	F F

8a	Filtration	Filtration: Insoluble solid is removed from a liquid
8b	Carbon Dioxide CO ₂ or Ammonia NH ₃	Carbon dioxide is produced by heating NaHCO3 (bottom right corner) and is recycled to back into the Solvay Reactor (top left) Ammonia is released in the Reactor and goes back into the Solvay Process (middle left side)
8c	Calcium chloride CaCl ₂	Calcium Chloride is the product from the Reactor
8d	0.0448	HCl no. of mol = volume × concentration = 0.0224litres × 0.1mol l^{-1} = 0.00224mol Na ₂ CO ₃ + 2HCl \longrightarrow 2NaCl + CO ₂ + H ₂ O 1mol 2mol 0.00112mol 0.00224mol concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.00112 \text{ mol}}{0.025 \text{ litres}}$ = 0.0448 mol l^{-1}
9a	S ₂ O ₃ ²⁻ +2H ⁺ ↓ S+SO ₂ +H ₂ O	$(Na^{+})_{2}S_{2}O_{3}^{2-} + 2H^{+}Cl^{-} \rightarrow 2Na^{+}Cl^{-} + 5 + 5O_{2} + H_{2}O$ $Split up compounds into separate ions$ $2Na^{+} + S_{2}O_{3}^{2-} + 2H^{+} + 2Cl^{-} \rightarrow 2Na^{+} + 2Cl^{-} + 5 + 5O_{2} + H_{2}O$ $Cancel out any spectator ions which appear on both sides$ $2Na^{+} + S_{2}O_{3}^{2-} + 2H^{+} + 2Cl^{-} \rightarrow 2Na^{+} + 2Cl^{-} + 5 + 5O_{2} + H_{2}O$ $Re-write equation omitting spectator ions$ $S_{2}O_{3}^{2-} + 2H^{+} \rightarrow S + SO_{2} + H_{2}O$
9b(i)	When X on paper disappears, stop timing	PPA 1.2 Question The "X" on the paper allows the observer to accurately judge the end-point of the reaction consistently as long as the same "X" and same observer are used.
9b(ii)	SO₂ produced is a harmful gas	PPA 1.2 Question Sulphur dioxide is a toxic gas released in small quantities during the reaction.
9c(i)	50	From graph: if concentration = 0.1 mol l ⁻¹ then rate = 0.02s ⁻¹ rate= $\frac{1}{\text{time}}$ time = $\frac{1}{\text{rate}}$ = $\frac{1}{0.02}$ = 50s
9c(ii)	Increased concentration increases the no. of collisions increasing reaction rate	The reaction rate is dependent on the number of successful collisions between reactants. Increasing concentration of reactants makes the likelihood of a successful collision more likely.
10a	High strength	Kevlar is a extremely strong, lightweight plastic used in bullet-proof vests
10b	2 functional groups on each monomer	For a monomer to become a large condensation polymer, the monomers must have 2 functional groups each. If the monomer only had 1 functional group, the polymer would no longer be able to extend any further.
10c	O H - C - N -	H $N-C_6H_4-N$ H
11a	Halogens	Name Alkali Metals Halogens Noble gases Transition Metals Location Group 1 Group 7 Group 0 Between Group 2 + 3

44	Reaction is	Reactants have more energy than the products. During a chemical reaction,
11a(i)	Exothermic	the energy not transferred from the reactants to the products is released
		as heat energy. This is an exothermic reaction.
11a(ii)	Only partial	Strong Acid: full dissociation of molecules to form H ⁺ ions
110(11)	dissociation of H ⁺ ions	Weak Acid: partial dissociation of molecules to form H ions
12a(i)	Alkenes	Alkenes are a homologous series with a C=C double bond and general formula
		of C _n H _{2n}
12a(ii)	Addition	Addition Reactions: Molecules are added across a C=C double bond
		gfm C_3H_6 = (3×12) + (6×1) = 36 + 6 = 42g
		no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{100}{42} = 2.38 \text{mol}$
		gfm 42
126	405-	$I_2 + C_3H_6 \longrightarrow C_3H_6I_2$
12b	605g	1mol 1mol
		2.38mol 2.38mol
		$qfm I_2 = (2x127) = 254q$
		$mass = no. of mol \times gfm = 2.38 \times 254 = 605g$
12.	Oils have more C=C	The number of $C=C$ double bonds in a fat/oil is directly linked to the number
12c	double bonds than fats	
	·	
	•	Type of Catalyst Definition
12d	heterogeneous	
12d		Type of Catalyst Definition
	heterogeneous	Type of Catalyst Definition Homogeneous Catalyst in same state as reactants
12d 13a	heterogeneous	Type of Catalyst Definition Homogeneous Catalyst in same state as reactants Heterogeneous Catalyst in different state from reactants
	heterogeneous	Type of Catalyst Homogeneous Catalyst in same state as reactants Heterogeneous Catalyst in different state from reactants no. of mol = volume × concentration = 0.4 litres × 0.50 mol l ⁻¹ - 0.2 mol
13a	heterogeneous 31.9	Type of Catalyst Definition Homogeneous Catalyst in same state as reactants Heterogeneous Catalyst in different state from reactants no. of mol = volume × concentration = 0.4 litres × 0.50 mol t^{-1} - 0.2 mol mass = no. of mol × gfm = 0.2 mol × 159.5 g mol t^{-1} = 31.9 g Zn \rightarrow Zn ²⁺ + 2e ⁻
13a	heterogeneous	Type of Catalyst Definition Homogeneous Catalyst in same state as reactants Heterogeneous Catalyst in different state from reactants no. of mol = volume × concentration = 0.4 litres × 0.50 mol t^{-1} - 0.2 mol mass = no. of mol × gfm = 0.2 mol × 159.5 g mol t^{-1} = 31.9 g Zn \rightarrow Zn ²⁺ + 2e ⁻ Cu ²⁺ + 2e ⁻ \rightarrow Cu
13a	heterogeneous 31.9	Type of Catalyst Definition Homogeneous Catalyst in same state as reactants Heterogeneous Catalyst in different state from reactants no. of mol = volume × concentration = 0.4 litres × 0.50 mol t^{-1} - 0.2 mol mass = no. of mol × gfm = 0.2 mol × 159.5 g mol t^{-1} = 31.9 g Zn \rightarrow Zn ²⁺ + 2e ⁻
13a 13b(i)	heterogeneous 31.9 Zn+Cu²+→Zn²++Cu	
13a	heterogeneous 31.9 Zn+Cu²+→Zn²++Cu	
13a 13b(i) 13b(ii)	heterogeneous 31.9 Zn+Cu²+→Zn²++Cu	
13a 13b(i)	heterogeneous 31.9 Zn+Cu ²⁺ →Zn ²⁺ +Cu 0.0015	
13a 13b(i) 13b(ii)	heterogeneous 31.9 Zn+Cu²+→Zn²++Cu 0.0015 Longer the chain the	$ \begin{array}{ c c c c c c }\hline \textbf{Type of Catalyst} & \textbf{Definition} \\ \hline \textbf{Homogeneous} & \textbf{Catalyst in same state as reactants} \\ \hline \textbf{Heterogeneous} & \textbf{Catalyst in different state from reactants} \\ \hline \textbf{no. of mol = volume } \times \textbf{concentration} = 0.4 \textbf{litres} \times 0.50 \textbf{mol } \textbf{l}^{-1} - 0.2 \textbf{ mol} \\ \hline \textbf{mass} = \textbf{no. of mol} \times \textbf{gfm} = 0.2 \textbf{mol} \times 159.5 \textbf{g mol}^{-1} = 31.9 \textbf{g} \\ \hline & \textbf{Zn} & \rightarrow & \textbf{Zn}^{2+} & + & \textbf{2e}^{-} \\ \hline & \textbf{Cu}^{2+} & + & \textbf{2e}^{-} & \rightarrow & \textbf{Cu} \\ \hline & \textbf{Add together equations cancelling out electrons} \\ \hline & \textbf{Zn} & + & \textbf{Cu}^{2+} & \rightarrow & \textbf{Zn}^{2+} & + & \textbf{Cu} \\ \hline & \textbf{Rate} = & & & & & & & & & & & & & & & & & & $
13a 13b(i) 13b(ii)	heterogeneous 31.9 Zn+Cu²+→Zn²++Cu 0.0015 Longer the chain the higher the critical temp	$ \begin{array}{ c c c c c c c }\hline \textbf{Type of Catalyst} & \textbf{Definition} \\ \hline \textbf{Homogeneous} & \textbf{Catalyst in same state as reactants} \\ \hline \textbf{Heterogeneous} & \textbf{Catalyst in different state from reactants} \\ \hline \textbf{no. of mol = volume} \times \textbf{concentration} = 0.4 \textbf{litres} \times 0.50 \textbf{mol } \textbf{t}^{-1} - 0.2 \textbf{ mol} \\ \hline \textbf{mass} = \textbf{no. of mol} \times \textbf{gfm} = 0.2 \textbf{mol} \times 159.5 \textbf{g mol}^{-1} = 31.9 \textbf{g} \\ \hline & \textbf{Zn} & \rightarrow \textbf{Zn}^{2+} & + 2e^{-} \\ \hline & \textbf{Cu}^{2+} & + 2e^{-} & \rightarrow \textbf{Cu} \\ \hline & \textbf{Add together equations cancelling out electrons} \\ \hline & \textbf{Zn} & + \textbf{Cu}^{2+} & \rightarrow \textbf{Zn}^{2+} & + \textbf{Cu} \\ \hline & \textbf{Rate} = \frac{\Delta \textbf{quantity}}{\Delta \textbf{time}} & = \frac{0.50 - 0.41}{60 - 0} = \frac{0.09}{60} = 0.0015 \textbf{ mol } \textbf{l}^{-1} \textbf{s}^{-1} \\ \hline & \textbf{Alkane} & \textbf{Propane} & \textbf{Butane} & \textbf{Pentane} & \textbf{Hexane} \\ \hline & \textbf{Critical Temp} & \textbf{97°C} & 152°C & 197°C & 234°C \\ \hline & \textbf{Formula} & \textbf{C_4H_{10}} & \textbf{C_5H_{12}} & \textbf{C_6H_{14}} \\ \hline & \textbf{Alkane} & \textbf{butane} & \textbf{pentane} & \textbf{hexane} \\ \hline \end{array}$
13a 13b(i) 13b(ii) 14a	heterogeneous 31.9 Zn+Cu²+→Zn²++Cu 0.0015 Longer the chain the	$ \begin{array}{ c c c c c c }\hline \textbf{Type of Catalyst} & \textbf{Definition} \\ \hline \textbf{Homogeneous} & \textbf{Catalyst in same state as reactants} \\ \hline \textbf{Heterogeneous} & \textbf{Catalyst in different state from reactants} \\ \hline \textbf{no. of mol = volume } \times \textbf{concentration} = 0.4 \text{litres} \times 0.50 \text{mol } \text{l}^{-1} - 0.2 \text{ mol} \\ \hline \textbf{mass} = \textbf{no. of mol} \times \textbf{gfm} = 0.2 \text{mol} \times 159.5 \text{g mol}^{-1} = 31.9 \text{g} \\ \hline \textbf{Zn} & \rightarrow & \textbf{Zn}^{2+} & + 2e^{-} \\ \hline \textbf{Cu}^{2+} & + 2e^{-} & \rightarrow & \textbf{Cu} \\ \hline \textbf{Add together equations cancelling out electrons} \\ \hline \textbf{Zn} & + \textbf{Cu}^{2+} & \rightarrow & \textbf{Zn}^{2+} & + \textbf{Cu} \\ \hline \textbf{Rate} = & \frac{\Delta \text{quantity}}{\Delta \text{time}} & = & \frac{0.50 - 0.41}{60 - 0} = & \frac{0.09}{60} = 0.0015 \text{ mol } \text{l}^{-1} \text{ s}^{-1} \\ \hline \textbf{Alkane} & \text{Propane Butane Pentane Hexane} \\ \hline \textbf{Critical Temp} & 97^{\circ}\text{C} & 152^{\circ}\text{C} & 197^{\circ}\text{C} & 234^{\circ}\text{C} \\ \hline \textbf{Formula} & \textbf{C}_{4}\textbf{H}_{10} & \textbf{C}_{5}\textbf{H}_{12} & \textbf{C}_{6}\textbf{H}_{14} \\ \hline \textbf{Alkane} & \text{butane} & \text{pentane} & \text{hexane} \\ \hline \textbf{Critical Temp} & 152^{\circ}\text{C} & 197^{\circ}\text{C} & 234^{\circ}\text{C} \\ \hline \end{array}$
13a 13b(i) 13b(ii)	heterogeneous 31.9 Zn+Cu²+→Zn²++Cu 0.0015 Longer the chain the higher the critical temp	$ \begin{array}{ c c c c c c c }\hline \textbf{Type of Catalyst} & \textbf{Definition} \\ \hline \textbf{Homogeneous} & \textbf{Catalyst in same state as reactants} \\ \hline \textbf{Heterogeneous} & \textbf{Catalyst in different state from reactants} \\ \hline \textbf{no. of mol = volume} \times \textbf{concentration} = 0.4 \textbf{litres} \times 0.50 \textbf{mol } \textbf{t}^{-1} - 0.2 \textbf{ mol} \\ \hline \textbf{mass} = \textbf{no. of mol} \times \textbf{gfm} = 0.2 \textbf{mol} \times 159.5 \textbf{g mol}^{-1} = 31.9 \textbf{g} \\ \hline & \textbf{Zn} & \rightarrow \textbf{Zn}^{2+} & + 2e^{-} \\ \hline & \textbf{Cu}^{2+} & + 2e^{-} & \rightarrow \textbf{Cu} \\ \hline & \textbf{Add together equations cancelling out electrons} \\ \hline & \textbf{Zn} & + \textbf{Cu}^{2+} & \rightarrow \textbf{Zn}^{2+} & + \textbf{Cu} \\ \hline & \textbf{Rate} = \frac{\Delta \textbf{quantity}}{\Delta \textbf{time}} & = \frac{0.50 - 0.41}{60 - 0} = \frac{0.09}{60} = 0.0015 \textbf{ mol } \textbf{l}^{-1} \textbf{s}^{-1} \\ \hline & \textbf{Alkane} & \textbf{Propane} & \textbf{Butane} & \textbf{Pentane} & \textbf{Hexane} \\ \hline & \textbf{Critical Temp} & \textbf{97°C} & 152°C & 197°C & 234°C \\ \hline & \textbf{Formula} & \textbf{C_4H_{10}} & \textbf{C_5H_{12}} & \textbf{C_6H_{14}} \\ \hline & \textbf{Alkane} & \textbf{butane} & \textbf{pentane} & \textbf{hexane} \\ \hline \end{array}$
13a 13b(i) 13b(ii) 14a	heterogeneous 31.9 Zn+Cu ²⁺ →Zn ²⁺ +Cu 0.0015 Longer the chain the higher the critical temp Answer between	$ \begin{array}{ c c c c c c c }\hline \textbf{Type of Catalyst} & \textbf{Definition} \\ \hline \textbf{Homogeneous} & \textbf{Catalyst in same state as reactants} \\ \hline \textbf{Heterogeneous} & \textbf{Catalyst in different state from reactants} \\ \hline \textbf{no. of mol = volume} \times \textbf{concentration} = 0.4 \textbf{litres} \times 0.50 \textbf{mol } \textbf{t}^{-1} - 0.2 \textbf{ mol} \\ \hline \textbf{mass} = \textbf{no. of mol} \times \textbf{gfm} = 0.2 \textbf{mol} \times 159.5 \textbf{g mol}^{-1} = 31.9 \textbf{g} \\ \hline \textbf{Zn} & \rightarrow \textbf{Zn}^{2+} & + 2e^{-} \\ \hline \textbf{Cu}^{2+} & + 2e^{-} & \rightarrow \textbf{Cu} \\ \hline \textbf{Add together equations cancelling out electrons} \\ \hline \textbf{Zn} & + \textbf{Cu}^{2+} & \rightarrow \textbf{Zn}^{2+} & + \textbf{Cu} \\ \hline \textbf{Rate} = \frac{\Delta \textbf{quantity}}{\Delta \textbf{time}} & = \frac{0.50 - 0.41}{60 - 0} = \frac{0.09}{60} = 0.0015 \textbf{ mol } \textbf{l}^{-1} \textbf{s}^{-1} \\ \hline \hline \textbf{Alkane} & \textbf{Propane} & \textbf{Butane} & \textbf{Pentane} & \textbf{Hexane} \\ \hline \textbf{Critical Temp} & 97^{\circ} \textbf{C} & 152^{\circ} \textbf{C} & 197^{\circ} \textbf{C} & 234^{\circ} \textbf{C} \\ \hline \textbf{Alkane} & \textbf{butane} & \textbf{pentane} & \textbf{hexane} \\ \hline \textbf{Critical Temp} & 152^{\circ} \textbf{C} & 197^{\circ} \textbf{C} & 234^{\circ} \textbf{C} \\ \hline \textbf{Branched Alkane} & 2-methylpropane} & 2-methylbutane & 2-methylpentane \\ \hline \end{array}$